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THREE-DIMENSIONAL SHOCK-CHANGE RELATIONS FOR REACTIVE FLUIDS

by

R. L. Rabie and Jerry Wackerle

ABSTRACT

The equations of motion governing reactive
fluid flow, together with the Rankine-Hugoniot
jump conditions and thermodynamic considerations,
are used to develop one- and three-dimensional
shock-change relations for shock waves propagat-
ing in reactive fluids. The relations are de-
rived in Cartesian space coordinates, assuming
a uniform, motionless state ahead of the shock.
In three dimensions, parameterization of the
shock surface in terms of two independent curvi-
linear surface coordinates and the use of some
results from the theory of surfaces are required,
but the shock-change relation obtained depends
on the surface configuration only through the
mean curvature. One form of shock-change re-
lation, both in three dimensions and in its one-
dimensional specialization, is developed with-
out recourse to the jump conditions. These con-
ditions and thermodynamic considerations are
then used to cast the relations in terms of dif-
ferent state variables and to show the relative
effects on the shock change of reaction in, and
immediately behind, the shock front. Simplifi-
cations are indicated for evaluating thermody-
namic derivatives and applying shock-change re-
lations with common equation-of-state assumptions.
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I. INTRODUCTION

The shock-change relation in one or more dimensions provides a tool for ana-
lyzing a shock wave without having to examine the entire associated flow field.
This simplification has obvious merit. Most work in the area of shock change has
dealt with one-dimensional systems, and both inert and reactive systems have been

trea*ted.l_g Such one-dimensional shock-change relations have a large area of




application but become inadequate when the shock surface is no longer planar,
cylindrical, or spherical. For problems involving arbitrary shock-surface con-
figurations in reactive fluids, one requires three~dimensional shock-change rela-
tions that include the geometry of the shock surface. Such relations have been

obtained by other worke::*s,lo_13

but much of their work is in coordinate systems
and notation unfamiliar to many shock-wave researchers and does not provide full
descriptions of the derivations. Here, we employ thermodynamics and notation
that we consider more standard in the field, and obtain relations that are more
readily comprehended by inspection.

In Sec. 1I we present a brief development of a one-dimensional shock-change
relation to motivate the three-dimensional derivation that follows in Sec. III.
The derivations in these two sections are done without recourse to the Hugoniot
relations, and the equivalents of one- and three-dimensional relations are not
reduced to expressions of the shock change in a single state variable. That is
done in Sec. IV, where we present thermodynamic considerations that allow shock-
change relations to be recast in terms of different thermodynamic variables and
forms indicating the relative effects of reaction within and immediately behind

the front. In Sec. V we describe the application of shock-change relations with

simplifying assumptions and a commonly used equation-of-state representation.

II. ONE-DIMENSIONAL SHOCK-CHANGE RELATION FOR A REACTIVE FLUID

A familiarity with one-dimensional, reactive-flow, shock-change relations
helps in two ways in the development of a three-dimensional relation: (1) the
general course of the derivation is similar in both cases and (2) the resulting
expressions have a term-by-term correspondence. Therefore, as an introduction to
shock-change relations, we give a brief derivation of the one-dimensicnal case.
The goal of a shock-change analysis is to find a set of relations giving the evo-
lution of the shock state in terms of a minimum amount of information about the
flow that immediately follows the shock and about the geometrical properties of
the shock surface.

In a mixed form, the equations of conservation of mass and momentum for in-
viscid, nonconducting, reactive flow are

Q:v(g—i)+mv—;i- (1)

and



pi=- B or a=-vER) . (2)

Sxt

In the above equations v is the specific volume (the reciprocal of the density
p), u is the particle velocity, p is the pressure, and m is the coordinate system
parameter, that is, m = 0, 1, 2 as the geometry is planar, cylindrical, or spheri-
cal. The coordinates are mixed in that the superposed dot represents the mate-
rial or convective derivative, that is,

. of of

£=() +ulsg > (3)

p 4 t

while the derivative 3/9x is an Eulerian derivative. The conservation of energy

for an adiabatic system takes the form

e=-pv , (%)

and the reaction rate is

A = r(p,v,A) (5) |

where e is the specific internal energy and A is the reaction progress variable.
In addition, a complete equation of state must be obtained for the material,

properly defining the energy and pressure

14
1

= g(s,v,l)

pls,v,A) .

P

Further, the second relation must be invertible to give the specific entropy, s,

so that the energy may be written

e = e[s(p,v,sA), v,Al = e(p,v,A) . A (6)

It is the second form of Eq. (6) that will be most useful throughout this report,
with the more complete e and D specification needed only to insure thermodynamic
consistency. ,

Denoting partial derivatives by subscripts, e.g., 8e/8v.= e,> one obtains
from Eqs. (4) and (6)




P A
or
e + pl é . .
v . A _
p+—g v--(-e—-)l—nl- (7)
p p

The factor (ev + p)/ep can be evaluated from the above equation-of-state assump-

tions by observing that

ev=—p=—-p
so that
[e. + p]
——v——-:_A= 2 5 = 2.2
: P, = P° p, = P, (8)

where c is the frozen (A = constant) Eulerian sound speed. We also note that the

parameter n in Eq. (7) is related to the standard "thermicity" coefficient o, by

n = pc?o (9)

so that an alternative statement of Eq. (7) is

p/pc? + v/v = ok . (7")

Equation (7) is often termed the master equation or Wood-Kirkwood relation.lu It
or its equivalent is derived in several of the cited references. Note that it
applies without champe in three dimensions.

The relations above hold throughout the flow, but we now wish to focus at-
tention on the shock 1tself. We use no subscript for the state behind the shock
and subscript 0 for the state ahead. The unshocked state is taken to be uniform

and motionless. Thus Uy = 0 and we have, for example,



3(p - py) gy %y gy
— o9x __ ox 9x  ox °

With these conditions, the time rate of change of any flow variable f evalu-

ated along the shock locus is given by

8f _ of A dx of
rs?-a—t’falsa—x - (10)

is the shock velocity U so that Eq. (10) is just

The quantity %%
S

SE _ 3, 4 3F
ﬁ-—at'f-Uax . (11)

Using Eq. (3) one gets an alternate form for Eq. (11),

%ﬁ-:'f+(u-u) (g—f{) : . (12)

The shock-change equation is readily derived by applying the kinematic rela-
tion, Eq. (12), to the pressure and particle velocity, and using mass and momentum
conservation and the master equation to select and reduce the number of quantities

that must be evaluated behind the shock. Defining the quantity

U= (U -u)

one can write

Sp . 3p.
5¢ = Pt UGY (13)
and

Su _ du

e u + U('ﬁ) . (14)

Eliminating u from Eq. (14) and using Eq. (2) gives

Su_ @2 4 ule
st V(Bx) * “(ax)



The term (%%) is eliminated from the above by using Eq. (1) to get

Su_ _ .3 v _mu
st~ V(ax) + u[v X

In the last expression, (%E) is removed by using Eq. (13), and results in

Su _ o9p 2rV  mu
Usg= - vigg-pl+ P12 - 71 .

The master equation is now invoked to remove ¥ and, after minor rearrangement,

this manipulation gives

ot $= - wp + i - 2 (15)
where
u2
M=
02

is the square of the frozen (A = constant) Mach number.

Equation (15) is the essential one-dimensional result, cast in terms of P>
i, and a term in the curvature of the shock surface, and includes shock-change
terms in both the pressure and particle velocity. Reductions to relations for
the shock change of a single variable will be deferred until the three-dimension-

al equation corresponding to Eq. (15) is derived.

IITI. A THREE-DIMENSIONAL SHOCK-CHANGE RELATION FOR A REACTIVE FLUID

As previously mentioned, the derivation of a three-dimensional shock-change
relation produces some complications. The difficulties occur because in three
dimensions the shock is a surface rather than a point as it is in a single dimen-
sion. In three dimensions, we specify the location of the surface in the usual

manner™ > >1° by the relations

X; = xi(El,Ez,t) i=1,2,3 , (16)




where the xi are the rectangular Cartesian coordinates of the surface and the Ea,

o = 1,2 are curvilinear coordinates along the surface. If n, are the components

-’
of the unit vector n normal to S, the shock surface, pointing into the unshocked

. X4
material and the derivatives szi-are tangent to the surface, the condition
o
axi
R ) - (17)
13
o
holds on'S. (In Eq. (17) and for all further results a repeated index is summed

over the range of the index according to Einstein's summation convention.) The

components. of the first and second fundamental forms of the surface are defined
. 15,16
respectively, as

Bxi Bxi
Bap T T, T, @ B = (8
and
2
b =-a-—ii—n «, B = 1,2 (19)
of = BEIE, i J 2 -

AThen the mean curvature of the surface is

af b ,

=1
= 5 8 B

(20)

B

where the ga are the contravariant components constructed from the covariant

components using the identity gav gy = 8%, It is possible to write @ as a func-

B

tion of the principal radii of curvature of the surface as well, and this results

in

R

1,1 .1
Q=3 (F+3)
2 1 Ry i

where R, and R2 are the principal radii of curvature of S at the point in ques-

tion. In addition, one must make use of the Gauss-Weingarten relationl7




ani By axi

3.8 bsasg; . (21)

The shock velocity, or propagation velocity of the surface, is defined as

normal to the shock surface, so that

Un (22)

> > >
U= IU ln

>

where U = |U| is the normal component. As a result of the lack of motion and the
homogeneity in the unshocked state, the particle velocity is normal to the shock
surface (the tangential component of the particle velocity is conserved across

the shock surface). Thus it follows that

ey

> > -»>
= |u/n = wm . (23)

With the shock-surface parameters set forth and the shock and particle veloc-
ities defined, one can generalize some of the definitions used in the one-dimen-

sional case so that they will apply to the three-dimensional case. If

-> +> > >
U=(W-uw)=WW-un-= Un |, (2u)

the continuity and momentum relations become, respectively,

. >

v = v(Veu) (25)
and

T=-v Vo , (26)

where the definition of the material time derivative is now

->
£ = (%§>+u-v+f. (27)

The three-dimensional analog of the one-dimensional kinetic relation, Eq. (12),

is




> >
%§-= f + UVE . (28)

This form follows from Eqs. (24) and (27) and the condition that the surface

propagates normal to itself;l7 thus the components of the shock velocity are

dx.

- 1
U; = dt

and the change of a scaler function f on the propagating surface is just the

directional derivative

8f _3f  9f My 3 > o
5t T3 F o @ et UTVE

A similar result is found in Ref. 15, and termed the "kinematic compatibility
condition."

After these preliminaries, the derivation of a three-dimensional shock-
change relation follows in much the same manner as that of the one-dimensional
case, except that the kinematic relation, Eq. (28), now operates on three compo-
nents of the particle velocity. The resulting three equations can be written as

the vector equation

6+ 3> -> ->
3%'= u+ (U*NHu , (29)
- 3 .
where ({*V) is the operator U, =—'= U n, =— . Substitution from the momentum
3 9%y j ij

equation, Eq. (26), eliminates |

> > - >

%%-= -vVp+ WUV) u . (30)

Taking the dot product of this equation with U and using p for £ in Eq. (28)
allows the elimination of ﬁ%, producing
+ &U

> > >
logs = - v[%% - b1+ U UY) U . (31)




The last term in Eq. (31) is to be eliminated from the mass conservation relation,
but that equation involves the V-U rather than the operation shown (a distinction
that doesn't arise in the one-dimensional case). Relating 3-(3-V)3 to U2Vey
gives rise to a term proportional to the mean curvature of the surface. To see

this, we form the function

3 (un,) 3 (un.)
i J

> > > >
- * ° - [ ) L] = 2 =
F = Ue(UeV)u - (Uel)Veu = U [ninj axj ij 15

> .
where the replacement of us with un, is allowed because u is perpendicular to S.

Further expansion gives

) M Bni u on, ) ani on,
F=U[nja—x.+ninjUE;—an—uJ-ax.]=U [ninjuE-u—_laxj].(32)
However, by Eq. (21)
ani ) Bni aga ) aga By . axi
- = T " Y- L]
axj aga axj ij Bo SEY
so that by Eq. (17)
on, ox, d&
S S BY B S
u ninj ij = ninj ug bBa aEY ij o .
Also by Egqs. (20) and (21)
on, ax., df
cued= Ny ol o B o
u axj ug bBa 5 . ij ug bBa GY 2 u@ . (33)

It follows from Eq. (33) that

> o

Us (U-7)U = U2Veu + 2 U2uQ .
From Eq. (25) it follows that

G
Us (UsV)T = U2p% + 2 U2uQ .

10




In this last result the master equation is used to remove v in terms of D and A,

giving

Ue (UeVYS = u%tﬂ%—‘—)gj £ 2 U2 . ' (34)
pc

When this is substituted into Eq. (31) and some terms are rearranged, the three-

dimensional shock-change relation emerges as

%%*’ ¢ U%—:: (1-wp + mi + 20U2uf
or
%E—+ p u%%: (1 - Wp + ol2(20u + OA) . (35)

->
In the above equation, the term including U°%%-has been replaced with one involv-

ing velocity magnitudes according to

2
> &0 8Cun; ) su U %% 8u
R R A

Equation (35) is identical to the one-dimensional result, Eq. (15), except
for the curvature term. Realizing that in one dimension u and U are the "normal
components" identified by the same symbols above and that m/x is just twice the
mean curvature of planar, cylindrical, or spherical surfaces, we recognize that

Eq. (15) is the one-dimensional specialization of Eq. (35).

IV. THERMODYNAMIC CONSIDERATIONS IN FORMING SHOCK-CHANGE RELATIONS

To effect convenient applications of Eq. (35), one must know or assume the
e(p,v,A) equation of state, invoke the shock-jump conditions or Hugoniot rela-
tions (not yet used in the development), and specify explicitly or implicit-
ly the amount of reaction (change in A) occurring in the shock process. With
these requirements met, thermodynamic considerations allow the casting of shock-
change relations in a variety of forms, as are appropriate for different physical

problems, measurements, and equation-of-state assumptions.

11



For a uniform, motionless state ahead of the shock, the Hugoniot relations

p&]=pU=J , (36)
P -~ Py = PyUu = Ju (37)

and

=1 —v) = x 2 -
e - ey =3 (p + po) (vo v) = 5 u” o+ po(v0 v) . (38)
Here the subscript zero denotes the state ahead of the shock, J is the negative
of the mass flux, and the velocities are scalar quantities in both the one- and
three~dimensional cases, representing normal components in the latter instance.

In addition, we note that for any two state variables, F and f,

8F _ dF; &f

_5?—de3_€ (39)

where the subscript H denotes evaluation along the shock Hugoniot.
A common practice is to define the shock Hugoniot by a shock velocity-

particle velocity relation, that is:
U = Uylu) . (40)

With such a specification and the Hugoniot relations [Eqs. (36)-(38)], the pres-
sure, volume, energy, and velocities immediately behind the shock may be expressed
in terms of a single variable. For example, if the specific volume is chosen for
this parameterization, Eqs. (36)-(38) and (40) yield p = pH(v), e = eH(v),
u = uH(v), and U = UH(V). Specification of AH(V) must, however, be done either
by a separate additional assumption or by the additional use of a complete
e(p,v,A) equation of state.

In recasting Eq. (35), it is convenient to use the particle velocity as the
independent variable, denoting differentiation by this variable with a prime, and

to define the dimensionless variable

12



T B §
V= /Ay TP )

With this definition and Egs. (36), (37), and (39), a pressure form of Eq. (35)

may be written:

(1 - wp + Ur2(p - Py )0 + JoA]
SEED) . (42)

Sp .
8t
Alternatively, we may eliminate the pressure from Eq. (35). First using Egs.

(28) and (26), we obtain

> >
.

n=82y pen =Ry g g

Here the second form follows from

Gui su . > > . du,
Dy T T ae - MYy t o UVu)=nou + U ngn, 5;;
R > > an.
= n.,u, + UsVu - Uu n.n L 3
i1 ij

the last term above was shown to vanish (see preceding section) so that by Eq.
(20), niﬁi = u. Equations (37), (39), and (41)-(43) can then be used to give

Su _ (1 - wu + U2u + od)

3t T+ W) . (44)

To develop a shock-change relation in the specific volume, we introduce a

parameter defined in analogy to the square of the Mach number U, specifically

B u _ J2 _ J2y!
""—"dp/de"'p' ) o (45)

v' can be related to p' by differentiating the Hugoniot relations, Eqs. (36) and
(37), and eliminating U', yielding

13




v'=u=%(1/w-2) . (46)

b=, (47)
and an alternative form of the shock-change relation in pressure, Eq. (42), is

(1 - u)ﬁ + UL2(p - po)Q + Jci]

(3/2 + v/2) : (48)

Sp .
8t ~

Using this relation, together with the master equation to replace ﬁ with v, and

Eqs. (36), (87), and (39), we find the change in specific volume to be

(1/u - 1)v - 2(vy - VIR - (v/1)oA
(3/2v + 1/2) ‘

Sv
5t

(49) ;

A more complicated, but more useful, form is obtained by using Eq. (28) to replace

v with the normal component of the specific volume gradient

.%% = [(2v _QSﬁv_ Suv] [}l/u - 1)U§-6§ + 2(v0 - v)UQ + (v/u)%] . (50)

None of the above shock-change relations have any explicit reference to the
jump in progress variable, A, in the shock front. This does not mean that reac-
tion in the front does not affect the shock change but means rather that the ef-
fect of shock-front reaction is implicitly contained in the Hugoniot specifica-
tions, essentially in the parameters Y or V. These parameters can be specified
by Hugoniots constructed from data or assumption, and these Hugoniots can be
either reactive or unreactive, that is, they may or may not involve reaction
across the shock front. Although the Hugoniot specification and shock-front re-
action have some quantitative effect on the shock-change relations through the
evaluation of 1 and 0 from the equation of state, the stronger effect is in the
influence on P or v. It is instructive to examine these effects.

Considering first a Hugoniot specified in terms of particle velocity, the

energy jump condition, Eq. (38), and the equation of state can be differentiated

14



by u to give

_ ' = 1 ' '

u - pyv e,p tev' 4+ eAX . (51)
Noting that

ep = 1/pl , (52)

where T is the Gruneisen ratio, the addition of p to both sides of Eq. (51) and
use of Egs. (7), (8), (37), (41), and (46) yields

plu (o _ o _ o . (1 - 2p) _ Upod!
5 (L-9) =1+ . v

Defining®

-, _ PTu
K =1 5]

1- DF(VO - V) (53)

and rearranging gives

2-u+pk+ UoA' _ B+ Uox!

v = (1 + k) a ? (54)
where#®#

o= 1+ K (55)
and

B=2-u+ 1 . (56)

*This unusual expression of the Grlneisen ratio and compression has in common with
our other dimensionless variables the feature of being equal to unity as the shock
strength vanishes and of decreasing with increasing shock strength.

%**Note that o and B both have values of 2 in the vanishing shock-strength limit
and that both decrease with increasing shock strength.

15
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Similarly, differentiating the energy relations by v gives

e J2

2
%[‘1\7 (vg - v) + (p +p)] = B— - e - e (3N/3V), (57)

which, with some manipulation, gives

2 - U+ K - 2vc(dA/dv)H B - 2vc(dA/dv)H

u(l + k) - (2a - B) ) (58)

B
v

The reaction, if any, in the shock front might be expected to increase with
increasing shock strength; that is, A'> 0 and (d)\/dv)H < 0. In the usual case,
K or pk should be >-1 so that the effect of exothermic (0 > 0) reaction in the
shock front is to reduce ¥ or v. The result is a "stiffening" of the shock
Hugoniot by reaction, with a corresponding effect of the shock change on the dif-
ferent state variables. Inspection of Eqs. (42) or (u48) shows that the reductions
in Y or v tend to increase the change in shock pressure. Similarly, examination
of Eqs. (44) and (439) shows the shock change in particle velocity and specific
volume to be reduced by reaction in the front.

Another expression of the effect of shock-front reaction can be obtained by
using Eq. (39) to relate A' or (dA/dv)H to the change in reaction in the shock
front, 8A/8t. For example, operating on Eq. (54) gives:

Su

_ 8 du, Moy 8
iU i el sl (59)

|~

which when used with Eq. (44) gives

R o {(1-u)ﬁ+ut2un+o(i-§§%)1} . (60)
If this relation is used with Egs. (37), (39), (41), (43), and (59), there

results

S T PR _ L+ 18
% = 221 {1~ wp + UG - pA + I0Gh + 33T} (61)

16



Similarly, applying Eqs. (39) and (58) to the shock-change relations in specific
volume, Eqs. (49) and (50), yields

8v _ 200- B (1 - ) v o3 3 SA
'S?'[a-rB]{ u v_2(VO_V)UQ'1JUD‘-(l+n<)6’c]} > (62)
>
and in terms of Vv
Sv _ 8 - 2a a-w>o Y oofh - 388X
i [Sa T+ K)] {U -——Tr——-n Vv + 2(v0 - vHUuQ + ™ oL A T+ Gt]} .

(63)

With the same conditions of Kk or Wk >-1, Eqs. (60)-(63) show the same effects
of shock-front reaction (§A/8t > 0) as described earlier. More important, these
equations explicitly express how the shock changes are effected by reaction both
in the front and immediately behind the front. Experimental determinations may
be made of the changes in shock strength, material time derivatives or gradients
of state variables, and curvatures; ordinarily direct measurements of the reaction
rate or the energy release rate are not possible. When the curvature is provided
by experiment (or, more commonly, when planar waves, = 0, are available) and
when the shock change and time derivative or gradient behind the front is pro-
vided in only a single state variable, relations like Eqs. (60)-(63) and a full
equation of state yield only the net reaction rate or energy release in the front
and immediately behind it. If, however, such measurements are obtained for two
state variables, A can be eliminated from the two appropriate shock-change rela-
tions, and §A/8t can be evaluated. Seen another way, such measurements of, for
example, pressure and particle velocity, can yield 8§A/8t through the combination
of Eqs. (39), (u41), (43), and (54) without consideration of A Again, a known
equation of state must be assumed.

Some of the results formulated and points emphasized above are stated in a
paper by Chen and Kennedy,13 who used an order of thermodynamic considerations
different from ours. They first used only the flow relations, Hugoniot relations,
and equation-of-state characterizations to develop shock-change relations similar
to our Egs. (60) and (63). That was followed by a Hugoniot specification, a
determination equivalent to our expression of v in Eq. (58), and the formulation
of a shock-change relation with the shock-front reaction contained in a term in-

volving (dA/dv)y. Reference 13 deals only with shock-change relations in

17




specific volume and particle velocity, and with some labor it can be shown that
Eqs. (8.1)-(3.3) of that paper are identical to our Eq. (64) and that their Egs.
(3.5)-(3.7) are the same as our Eq. (60), except in one respect: Ref. 13 states
that relative contributions of (in our notation) A and S§A/8t are related by a
factor 3/(1 + k) for both the relations in specific volume and particle velocity,
whereas we found that the factor was W/(1 + uk) in the particle-velocity equation.
In re-examining his formulation, Chen18 found and corrected an error, thereby
eliminating the disparity between the two results. For example, in Ref. 13 where
the effect of different (unreactive and reactive) Hugoniots for PBX-9404 is dis-
cussed, Chen's correction reduces by about a factor of 4 the spread between the
upper and lower curves of Fig. 4, Ref. 13, but in no way invalidates Chen's and
Kennedy's point regarding the influence of assumed shock-front reaction on deter-

minations of A.

V. SIMPLIFYING ASSUMPTIONS IN THE APPLICATION OF SHOCK-CHANGE RELATIONS

Our interest in shock-change relations is in their application to practical
shock-propagation problems in condensed materials, particularly in predicting
complicated shock-initiation and detonation-wave configurations in solid explo-
sives. For such applications, high-speed streak- and framing-camera observations
can define shock surfaces, and enbedded- (Lagrangian-) gauge measurements of
pressure or particle velocity can give the necessary data for use, respectively,
in Eqs. (42) or (61) and in Eq. (43) or (60). Flash x-ray observations might be
used with the relations in specific volume, such as Egs. (50) or (63).

Although treating real solids as ideal fluids is a common practice in shock-
wave physics, we note that at shock strengths low enough for elastiec-plastic ef-
fects to be important, or in crystals or other elastically anisotropic materials,
the formulations become considerably mére complicated; the scalar pressures and
specific volumes must be replaced by stress and strain tensors, and the great
simplification resulting from having the particle velocity normal to the shock
front may no longer be used. For porous materials, even the assumption of a shock
discontinuity is questionable. In addition, the equations of state of most mate-
rials of interest--especially as related to the reaction coordinate in explo-
sives--are far from being as well defined as is assumed in the development. The
approximations suggested below are typical of the extent of information commonly

available.
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Clearly, the application of shock-change relations is simplified by the as-
sumption that no reaction occurs in the shock front, that is SA/8t = A' = dk/dv)H
= 0. This assumption, usual in the Zel'dovich-von Neumann-Doering theory of det-
onation, can be argued on the basis that any reaction requires a finite activa-
tion time, whereas the shock is an instantaneous process. Further, in the initi-
ation and detonation studies of condensed explosives--our principal area of in-
terest for shock-change analysis--there is no firm experimental evidence that the
assumption is incorrect.

With the shock front assumed unreactive, one need consider only the equation
of state of the unreacted material for the evaluation of all of the thermodynamic
derivatives used above except for n and o, but these derivatives with respect to
A still require some assumption of a complete (involving A) equation of state.

If only a determination of energy release rate R is desired, the need for a com-

plete equation of state can be avoided by using

. 2

~ -___ﬂ_'_-co)\

R= ejA = pr)" . . (64)

The Mie-Gruneisen form, I' = I'(v), with

pl' = poro (65)
and the Hugoniot reference locus specified by

U=C+Su , (66)

where C and S are constants, is a good approximation for the equations of state

of many unreacted solids. With these relations, one finds

T u
0O - . (67)

K=1-T(1=-v/v))=1-—=K

Use of the Hugoniot relations, appropriate definitions, and Eq. (66) gives

U

VEorse (68)

and
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V= —— . . (69)

Solving Egs. (54)-(56) with Eq. (68) and assuming that A' = 0 gives

S
W= 07 sw (70)
0
u(l + Ko)
s (71)

and

(U + su) (1 + Ko)

B = 7T SuKO (72)

Inspection of Eqs. (67) through (72) evidences the weak shock limits and reduc-
tions cited in the previous section_for the dimensionless parameters. Note that
in the strong shock limit, Kk + 1 ~ ?g, so that FO/S > 2 would be required for the
anomalous condition of k < -1 discussed earlier. The normal case is PO/S > 13
I'y/S 2 2 is rare.

Use of the above equations and the Hugoniot relations allows one to write
any of the shock-change equations of the previous section in terms of ﬁ, any one
state variable (u, p, V) or the shock velocity, and four constants, Py PO’ c,
and S. Because the resulting expressions look complicated and provide no further

illumination of the shock-change behavior, such formulations are not recorded

here.
NOMENCLATURE
b a tensor, the second fundamental form of a surface
c frozen Eulerian sound speed
C constant in the linear shock-particle velocity relation

specific internal energy
£f,F arbitrary functions defined in the flow
g a tensor, the first fundamental form of a surface

J mass flux normal to the shock surface
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~ B 9 d

DM E > A X <4 Ciedt b oo

€« < D Q 3

coordinate coefficient in one-dimensional flow equations

hydrostatic pressure

radius of curvature

principal radius of curvature
specific entropy

coefficient of u in the linear shock-particle velocity relation
shock surface .

time

particle velocity

shock velocity

specific volume

Cartesian coordinate

Gruneisen's parameter

dimensionless variable, 1 - pI'(v - vo)
reaction progress variable

square of the Mach number

curvilinear shock-surface coordinate

density =-%

n = pco

the "thermicity" coefficient, 2 CQR)
DCZ A e,v

the mean curvature of a surface

dimensionless variable, v = J2/(dp/dv)H

Sub- and Superscripts

H suwbscript denoting the Hugoniot curve

i,j,k subscripts denoting any one of the three Cartesian coordinates

0 subscript denoting value of the function in the fiducial state

o,B,Y subscripts denoting one of the two curvilinear shock-surface coordinates
Other Symbols. A

n unit normal vector on the shock surface

[ difference in shock and particle velocity = (3 - 3)

\ differential vector operator del = 2& 3%7

f material derivative of function f

%% derivative of function f along shock locus
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